Question Bank

SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY :: PUTTUR (AUTONOMOUS)

Siddharth Nagar, Narayanavanam Road, PUTTUR-517 583 **QUESTION BANK**

Subject with Code: Nuclear Engineering (20ME3112) Sem : I-Sem

Course & Branch: M. Tech(TE) **Regulation: R20**

Basics of nuclear fission and power from fission Explain the nuclear fission process with a neat sketch L2 1 6M a b Distinguish between nuclear fission and fusion L4 6M 2 What is the need for enrichment of uranium? Describe the most efficient L1 12M and elaborated methods suited to produce highly enriched U^{235} . What is chain reaction? What is the difference between controlled and L1 3 6M a uncontrolled chain reaction? b Which types of neutrons are most suitable for chain reaction? Why. L1 6M Explain the process of breeding with an example? L2 4 6M a How to convert nuclear fuels into fertile materials? b L1 6M L1 5 Define the term radioactivity. Explain it with an example 6M а b Illustrate the importance of half-life period of radioactive material in nuclear L2 6M power generation? 12M 6 Explicate the following terms in detail L2 (i) Breeding ratio (ii) Fertile Material (iii) Chain reaction Name different methods of power producing process in Nuclear Power Plant 12M 7 L1and explain them in detail? 8 How to control the nuclear power generation? L1 6M а L2 b Explain in brief how uranium material is produced from thorium?. 6M Amount of energy released in fusion higher than fission. Justify L5 9 6M а Asses the process of conversion of fissile materials into fertile materials L5 6M b 10 Write short notes on neutron scattering and neutron absorption? L2 6M а b Discuss radioactive decay chain L6 6M

UNIT-I

<u> </u>		UNIT-II		
	l	Neutron transport and diffusion		
1	а	Write the salient equations of Neutron diffusion theory	L2	6M
	b	The slow Neutrons are more useful rather than faster one in power generation.	L5	6M
		Justify		
2	a	Elastic Collisions are the important source for the nuclear power. Justify	L5	6M
	b	What do you know about Neutron transport? Explain	L2	6M
3		Mention the importance of Fick's law in diffusion of Neutron	L2	12M
4	a	Mention various parameters considered in neutron transport calculations	L2	6M
	b	What do you mean by the following	L1	6M
		(i) Elastic Scattering (ii) Inelastic Scattering (iii) Capture (iv) Fission		
5		Discuss the importance of diffusion theory of approximation	L6	12M
6	a	How do you make the neutrons slow Mention the importance of Fick's law in diffusion of Neutron	L1	6M
	b	Explain about Elastic Collision.	L2	6M
7		Mention the various assumptions and boundary conditions used for the derivation of diffusion equation	L2	12M
8		Write an equation for Neutron transport and explain the terms in it	L2	12M
9	a	What do you understand by diffusion theory of approximation	L1	6M
	b	Distinguish between Elastic and inelastic collisions of atoms	L2	6M
10	a	Explain the diffusion equations for point source and planer source	L2	6M
	b	Why Fick's Law is more important in nuclear power generation	L1	6M
		<u>UNIT-III</u> Multi group, Multi region diffusion equation, concept of criticality		
1	a	Name and Explain various critical parameters in thermal reactors	L1	6M
	b	What is the difference between Artificial Radioactivity and Natural Radioactivity	L1	6M
2		How do you find the solution for multi group diffusion equations	L1	12M
3		Mention the difference between multi group differential equations for single	L2	12M

		and multi regions		
4	a	Find solution for diffusion equations for a particular region	L5	6M
	b	Why thermal reactors are more crucial in power generation	L1	6M
5		Classify the reactors used in nuclear power plant and explain Boiling water	L2	12M
		Reactor with a neat sketch		
6	а	Describe the working of PWR with a neat sketch	L2	6M
	b	What are the merits and demerits of PWR	L1	6M
7	a	Name various parts of a Reactor and also mention the uses of each part	L1	6M
	b	How BWR differs from PWR	L1	6M
8	a	Mention the special features of Fast breeder reactor	L2	6M
	b	With a neat sketch explain the working of Sodium-Graphite reactor	L2	6M
9		Describe the working of Gas Cooled reactor with a neat sketch and also	L2	12M
		mention its merits and demerits		
10	a	Explain the working of reactor mostly used in India with a neat sketch	L2	6M
	b	What are the various features of Homogeneous reactor which makes it special	L1	6M
		UNIT-IVONS		6M
1	a	Reactor kinetics and control Radioactive materials are more dangerous to human beings. Justify	L5	6M
		vSTD:2001		
	b	What is the future of nuclear power?	L1	6M
2		Mention the significance of point kinematic equations in the nuclear power	L2	12M
3		How do you dispose radioactive materials without damaging environment	L1	12M
4		Write an equation for simple point Kinematics and mention the importance of	L2	12M
		each term in that.		
5		Define the following terms	L1	12M
		(i) In hour unit of reactivity (ii) Doller Unit of Reactivity		
6		Write the factors which affects the reactivity	L2	12M
7		Mention the importance of point kinematics and the factors which affect them	L2	12M
8		What is the importance of Radiation Hazards and shielding	L1	12M

	-	-		
9	а	What do you understand by Fission Product poison and reactivity coefficients	L1	6M
	b	List out the safety measures for the nuclear power plants	L1	6M
10		Discuss the factors which must be considered while selecting a site for a	L2	12M
		nuclear power plant		
		<u>UNIT-V</u>		
		Heat removal from reactor core		
1		How the temperature is distributed in reactor core	L1	12M
2		What is the need of radiation protection and also mention its standards	L1	12M
3		Discuss about the critical heat flux in reactor core	L2	12M
4		Mention the various safety precautions of Reactor core in nuclear power plant	L2	12M
5		Write equations for temperature distribution in reactor core	L2	12M
6		Write various equations and its solutions for heat transfer in reactor core	L2	12M
7		Heat flux plays very important role in reactor core. Justify	L5	12M
8		What are various units used for reactivity exposure and explain them in detail	L1	12M
9		Why reactor safety is important and mention its safety precautions	L1	12M
10		How reactors are useful in defense. Explain	L1	12M

Prepared By: Dr. S.SUNIL KUMAR REDDY

(STD:200)